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The Gaussian average method applied to phase transitions
in a dilute magnetic alloy

B. V. THOMPSON and D. A. LAVISt

Department of Mathematics, University of Manchester Institute of Science and
Technology

MS. recerved 21st December 1966, 1n revised form 16th March 1967

Abstract. The functional integral formalism which has been applied to the Ising
model of ferromagnetism 1s used here to treat the interaction of the annealing process
and magnetization in a dilute magnetic alloy AB (magnetic component A), Only the
posstbility of 50 50 component ordering 1s considered. A variational principle 1s
derived which leads to an upper limut for the free energy of the model. The approxi-
mation obtamed by minimizing this upper limit would appear to be an extension of
the Horwitz—Callen theory.

Order—disorder and magnetic transition curves are presented for three values of
the ratio R of the spin-exchange energy to the mixing energy. Component ordering
1s found to inhibit the magnetic transition 1n alloys which are rich 1n component B.

1. Introduction

Extensions of the Ising model calculations to dilute magnetic alloys have been made for
the case of a random distribution of magnetic atoms by Morgan and Rushbrooke (1961),
Sato et al. (1959) and Bell and Fairbairn (1961), in the latter case calculations also being
made for the presence of short-range component ordering. Recently a number of papers
have appeared which discuss the interaction of magnetization and long-range component
ordering 1n binary alloys. Let us consider such an alloy AB, for which the crystal structure
13 body-centred cubic, A being the magnetic component. If the range of the magnetic
force 1s just less than the second-nearest-neighbour separation, then for an alloy of com-
position 50%, A one would expect a magnetic transition to occur at a sufficiently low
temperature, provided no 50 : 50 component ordering were present. If the components
are ordered on the two equivalent sublattices, then the separation of the magnetic atoms is
too great for the magnetic phase transition to occur. This interaction of the annealing
process and magnetization is the subject of the present paper. We are not concerned with
the effect of variation of atomic magnetic moments with local environment which 1s the
province of crystal-field theory, but only with the statistical mechanics of what is essentially
a ternary solution,

Houska (1963) and Bell and Lavis (1965) have attacked the problem using the Bragg-
Williams approximation. This work has been extended by Lavis and Fairbairn (1966) to
include some short-range correlations using a modification of the Bethe method. Here
twelve field parameters are introduced and determined self-consistently. The general
features of the temperature-concentration phase diagrams reflect the expected inhibition
of magnetization by long-range component ordering. The approximations mentioned
above are uncontrolled in the sense that the error committed cannot be estimated or
minimized,

Following the work of Muhlschlegel and Zittartz (1963) and Thompson (1965) on the
one-component Ising model, we have formulated the alloy problem in terms of a functional
integral for the partition function. The virtue of this approach is that one is led to a
variational principle for the free energy of the system. As a trial function, we adopt para-
metrized mean-field expressions which imply the same mathematical mechanism for the
second-order phase transitions in the alloy as that of the spherical model of Berlin and
Kac (1952).
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646 B. V. Thompson and D. A. Lavs

2. Formulation

We take over the regular model of an alloy in which the components are distributed
over N fixed lattice sites. Let the number of A and B atoms be N, and Ny respectively.
Associated with each lattice site i there 1s a variable u, such that

+1 Aatsite i

= -1 B at site i.

The interaction energy of atoms on sites i, j may be wntten as Es,", E5p* or Enp'’ accord-
ing to the pair involved. If we define U,, = — #(Exa" + Epz'’ —2E43"), the Hamiltonian

of the model is
H=H,-} Z Uppe
1

H, is independent of the atomic configuration but depends on composition. For 50 : 50
ordering to be possible 1t is necessary that U,, < 0, where (i, j} are nearest neighbours.
We incorporate the Ising model of the magnetic interaction by the assumption that the
energy of an AA pair is Eg,7— V), 5.5, where s, = + 1 depending on the spin state. In
terms of the quantity #, = $s5,(1+ p,) the Hamiltonian may be written

H=H,-% z Vit + Uppapy).
i

For a quadratic form such as this, the Boltzmann factor and hence the canonical partition
function Z may be written as a functional integral or Gaussian average (Thompson 1965):

exp(—BH) = <H exp(gys +¢it)) Do

where ¢,, 4, may be termed the ordering and magnetic fields respectively. The average
denoted by < Dg 1s over a Gaussian distribution of variables x,, the fields ¢, and i, being
linear forms in the set x,. We define the Fourier expansions

Vi =N-t3 o(k)exp{ik.(1-1)}

k

Up = N"1> uk)expiek.(1-1)}

k

where the vectors k are the N wave vectors appropriate to a translationally syrmetric
lattice with periodic boundary conditions. The {x,} are then conveniently chosen as the
set of 4N variables labelled {wy; y,.; Py} qu )

g = > {2Bv(k)}*{x, cos(k . 1) +y, sin(k . 1)}

¢ = > {28u(k)}2{py cos(k . 1)+ g, sin(k . 1)}.

k

Summing over configurations of the ternary solution we obtain
Z = (2m)™ fﬁcz'Nﬂl"N‘*“‘ d¢ <U{6XP(¢1+¢’1)+eXP(¢z“¢’z)+2§ exp(— 1)} Da
in which the { integration selects the alloy of fractional composition ¢, ¢z by the require-
ment
N-1 zl: W = Ca—Cy

where ¢, = N,/N, ¢5 = Ng/N and C is a closed curve surrounding the point { = 0.
This may be written as the Gaussian average of the expression

(2m)~t § 22N =Npr 3N =N5 d(log C)H(cosh )2 cosh’d; + % log({=* cosh )}

i
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By means of the change of variable
o= {88u(0)}™* log £ > p,

1n the p, integration, we obtain

Z = (sz)'l(gg) 2N2‘Nﬂ Jl:[exp( —Nx,?) dxaljf(cosh )12 cosh(¢; + £ In cosh ¢))
x ﬁdpod(log f) exp {—N({pw@%ﬁ]:w—zw log g)}

where , is used to denote all the random variables except p,. The { integration may now
be effected by the steepest descent method giving

3(1—2¢,) + {8Bu(0)} ~ 2 po + {8Ru(0)} " log ] = 0
where { = , is the saddle point. After a little algebra we obtain

7z (ﬁ)”g | [Tdsedpoe=” ()

m

where
F = (1-2c4)po{28u(0)}*?+ > x,2—= N~ > I In cosh ¢, + In cosh(¢, + In cosh ;)
!

o
and

_ [Blu(0>_l
2zN
If the mixing energy U,, is between nearest-neighbour sites only, then the condition

U,, < 0is equivalent to #(0) < 0 and the p, integration is convergent. For other ranges of
interaction we assume that the condition %(0) < 0 is still satisfied.

}1/222N-N5+1 exp{(ANBu(0)(1 - 2¢,)2).

3. Mean-field approximations

A crude approximation to the functional integral (1) is found by replacing the fields ¢,
and ¢, by their average values over the whole lattice, thus

J= N2 = {280(0)} 2,
$ = N1 3 b = {28u(0)}"*po.

Such a substitution will not lead to component ordering which is essentially a nearest-
neighbour effect and therefore presumably associated with the k components of ¢, near
the edge of the first basic cell of the reciprocal lattice. Integration over the random variables
other than x, and p, 1s immediate, and from the saddle-point equations for these two
variables we obtain

2x5 = {2Bv(0)}*'%c, tanh{282(0)}!/2x,. (2)

As shown by Thompson the magnetization is proportional to the value of x,. Equation (2)
has non-zero solutions if fv(0)c, > 1 which is the Curie-Weiss dilution law. The Bell and
Lavis solution may be obtained by dividing the lattice sum into two parts Z;, and Xy
each representing a summation over a sublattice. The mean values over these sublattices

are
Jor = INTV3 b = (2800} 0+ (2600} s,
Jey = ZN_IZ@;//; = {282(0)}112x, — {280(x)} 2,

where x belongs to the set of vectors k, for which exp(ik.s) = —1, s being the vector
displacement of the sublattices (see appendix). There are similar expressions for ¢, and
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B2y Integration over all va{iables except &g, ¥y, Doy Px 18 immediate and we may obtain,
from the saddle-point equations for the latter,

(256 +1)? — (cy — cg)? cosh i,

= j7rl J
o = {8Bu(x)caj ™" log (246 = 1)>—(cs —cg)? cosh iy, o
M@ = }e,N(1+ o) tanh i, “
M® = ;lcfAN(l — c) tanh (/7@) (5)
where
S
ca{2Bu(r)}H?
MO 1 7\’[ Xq + Xy :l
= 34 {2,87,'(0)}1/2 {ZBTJ(K)}llz
and

M@=%N[ Yo __ % }
T L{2B(0)32 {2Bu(x)}H?

are the degree of component ordering and magnetization of the two sublattices as defined
by Bell and Lavis. A non-zero solution to (3) in the absence of magnetization will only
occur when Bu(x) > (4cpep)™t

4. The root-mean-square field approximation
One way of introducing some short-range spin correlations is to use the r.m.s, field

1/7 = (N1 3 V2 = { 3 Bo(k)(x + 2+ 3% — Yy )2

We also define
¢ =N (=) = { 2 BulR)(pi+ Db -+ @ — qeg - )2
!

k%0
In order to evaluate this approximation we introduce continuous variables ¢ and ¢ and
complex variables 2 and ¢, so that the mean-square fields enter the functional integral via
Dirac § functions. The calculation is parallel to earlier work (Thompson 1965) where
details of the mechanism of the second-order transition may be found. The saddle-point
equations resulting from these calculations are

1—-2cy+% tanh(} In cosh i+ —¢) +} tanh(} Incoshp + & + ) = 0 (6)
— 2z = ¢, tanh (7)
Ly (Ca—td cp—1d
2= ln(cA+tq5 cB+t¢) &)
s _ a1 2PY(R)
#h= 2N % 1+28z2(k) )
=@ 00 (10

= 1+ 28tu(k)

This approximation is clearly unsatisfactory as it contains no coupling of magnetization
and component ordering variables. However, ¢ = 0 1s always a solution to (8) correspond-
ing to the absence of component ordering and hence the magnetization equations can be
regarded as describing the case of a randomly dilute alloy. The critical temperature for
this case is given 1n figure 1 for a body-centred cubic lattice with nearest-neighbour
interactions.
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Figure 1. Root-mean-square approximation for the Curie temperature.

5. Variational principle

As the basis of a trial function for the free energy we choose the following parametrized
mean-square fields:

% = 285(0)(wo— @)+ 3, BA(RY(%:% + Y4+ %% - — Vi - 1)

k#0

{#% = 28a(k) (e =~ 0)*+ 2, BA(R)DW®+0* +Dub -1~ Gud-k)-

k#0,x

Variable a has the character of the molecular field and by analogy & may be thought of as
the ‘ordering field’ as envisaged by Bragg and Wilhams (1934).
The functions (k) and (k) satisfy

ak) = a(=k), (k) = o(—k).

The partition function in terms of these fields may be written

Z, = -(277)2(§)2Ng f f TTdx. dpo ds dt dy? dg? exp(— NFy)

where
Fy = > x,2—1(1-2c4)po{28]u(0)|}*'2 - 4 In cosh 4 —} In cosh(} In cosh i+ — )

—11In cosh(} In cosh ¢ + §+ ) — 2h® — 12 + 2 {2} + {42},

The problem now is to express the exact partition function given by (1) in terms of Z,.
We define the averaging process

Ny 2V
= =27 P (=) g [TTanedpode ey agfesp(~NF
™ «
and hence may write
Z = Zp{exp{MF.—F)}).
Therefore
log Z > log Zy+ {N(Fy— F)»
and the Helmholtz free energy
A< —(BN) *log Zy+F—-Fy).
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The parameters a, b, @(k), o(k) are determined by requiring that 4 be stationary with

respect to variations.
When evaluating Z, we need to diagonalize the quadratic form

S w2yl e+ D pE+al+

k#0 k#0.x

obtaining the eigenvalues

142826(k) = A, (k #0), 14280a(k) =X, (k #0, «), 1 (~2N times).

The terms of Fy in x4 and p,, are
x0% + 2B28(0) (%o — a)° + p” + ZBtil( ) (P — )
so that the saddle-point method is exact for integration over these variables. Let

flz) = 2N)~ Z log{1 +2829(k)}
(1) = (2N)- z log{1 + 2Bt (k)}.

k%0
Fy = flz) + §(t) — 24 — 167 — (1 — 2¢0)po{28]u(0)[}* 12
~%1Incoshy — }1n cosh($ Incoshy + ¢ — ¢)
~1In cosh(} In cosh 4+ G+ d)+ (Ag — 1), 102
+ (X=X, 252,

Then

(11)

As in the r.m.s. approximation the saddle-pomt equations for the five variables 2, #, 4, ¢, p,

may be written

GV =(1-2c,)+3 tanh(3 Incoshy+F+¢)+4 tanh (F Incoshp+d—¢) = 0 (12)

G? = f(z)—¢?+285(0)ar,~2 = 0
G® = §(t)— 2+ 280(x)b%,. "2 = 0
G® =2z)+c, tanh g = 0

G® =243 log(cAﬁt(é CB'_t¢) _
Catid cg+id

(13)
(14)
(1)

(16)

Details of the calculation of ¢F) involve a straightforward modification of earlier work

(Thompson 1965) and so we state the result only:
OFY = imo1e f exp(— X?) dX In cosh[4/2%X + {280(0)}2x,]

+(2m)t ff exp{—(X2+P%)} dX dPIn cosh($ + {28u()}* ?p, + /20P
+4 In cosh[y/ 29X+ (20(0)} o))
+(2m) 7 f f exp{ — (X2 + P2)} dX dP In cosh(§ — (28u(k)}*%p, + /2DP

+1 In cosh[/2¥ X + {282(0)}*2x,])
where x,, p, are at their saddle-point values which from (11) are
xg = 2823(0)ar,"*
b = 2BU(K)BX,
Y2 = N1 Bu(k)), "2, Q2 = N=1 > Bu(k)X,~*
k K

and
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Defining G = {F—F,)> we require
Fy+G) = 0.

6. Variational equations

Let e denote one of the four variational parameters; the variational equations simplify
with the help of the saddle-point conditions to
oF, oG 9G oz oG ot oG ép oG & oG ¢
Oy 3G G G 108 W Gk _, (17)
de Be Oz de Ot Qe 0 e Of Ge OF de

But, by the saddle-point equations (15) and (16), ¢, ¢ depend only on the pair b, i(k),
and, by (13) and (14), 2, ¢s depend only on g, (k). Thus in practice (17) has four terms on
the right rather than six. The mean field 4 1s given from the saddle-point equations by
_ — (12112
exp(2¢) = coshgb{—cBT—(ﬂ} .
Ca

—(19)*
We adopt the customary suffix notation for partial derivatives, obtaining
o G,® 9¢ G,2G,®
% TG0 % Gw(4)Gz<2)—Gw(2)Gz(4) (13)
o G.® 5 C.®G.®
e %__ e ¢ (19)

e G e GG ® — G,PG®

Also, if e is a magnetic parameter,

P2 G,V &
e Gzb e
whereas, if it is an ordering parameter, then
3(5 Gd>(1) o
ee GV oe
In the thermodynamic limit the equations (17) reduce to
0
— (Fy+G)—— = Fo+ = ——(F3+G)——
o, P2t C) GO Eﬁ(k)( 2tG e G 85(0)( 2+ G) G
o 1 0 1 ]
—(F,+0G)—— = F,+G F,+ G .
7 T2t o) G,®  ea(k )( z )G~ o aa(K)( z )Gum,

Before writing these equations explicitly it is convenient to define four double integrals.
Using the preliminary definitions

(g = w—lfff dX dP exp{— (X2 + P2}(X, P)

A* =} tanh($ + (28u(x)}?p, + ®1/2P+} In cosh[1/2F X + {280(0)}'2x,])

then
Ky = (A*~ A4 g
1
Ka= —5 (PAT+47)s
H, = 3 <tanh[/2%X + 280(0)} 2xo)(1+ A% + A7) b5
H, = }<{+/2X tanh[v/2¥X + {280(0)} "xo](1 + A* + 47) >
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Hence the variational equations become

2 a1, -
28002

~23B0(k) = ¥ 1Bu(k)H, (1)
_____2__ )_(f:l = Kl (22)
{2Bu(i)y® Xy

—~21Ba(k) = ©~3Bu(k)K;. (23)

In the limit ¢, = 1, (20) and (21) are the same as those of Horwitz and Callen (1961).
Similarly for v(k) = 0, all 2 and ¢, = ¢ = }. (22) and (23) represent the corresponding
solution for the mathematically identical binary alloy problem.

In general it is possible to show that the magnetization 7 per magnetic atom A is given

by
zxo 1 _ 2 Ao"—l a
T 2B R e 2B N ch

Also, from the stationarity of the free energy upper limit and the saddle-point equations it
follows that the degree of component ordering o is given by

o pe 11 %=1
B e B} X cy

We see that (20) and (22) are analogous to the Curie-Weiss magnetization equation and the
Bragg-Williams ordering equation respectively. By expanding the right-hand sides of
(20) and (22) in powers of @ and b respectively and cancelling the trivial solutions, we obtain,
after linearization, equations defining the appropriate phase transition temperatures.
The equations may also be derived from (21) and (23) upon setting Aqg = 0 and X, = 0
respectively, Whether or not the magnetic transition occurs at a higher temperature than
the order—disorder transition depends on the composition of the alloy and the ratio R of
the spin-exchange energy to the mixing energy, viz. R = u(«)/v(0). In the 2 plane the
saddle point moves towards the branch point & = —{285(0)} * and @ = 0 as the tempera-
ture decreases to the critical value when the saddle point and branch point coincide. With
further decrease in temperature the saddle point moves away from the branch poimnt but
now we have @ # 0. A parallel mechanism for ordering may be described on the ¢ plane.
The four possible phases may be denoted by

Iia=b=0
I1:a =0,6#0
II:a #0,6=0
IV:ia 0,56 #0.

7. Phase diagrams

7.1. Randomly diluted alloy

The case 1s obtained by setting U,, = 0 in the Hamiltonian, so that in the absence of a
magnetic interaction no atomic configuration is preferred. The variational principle gives
two equations for a and 9(k):

cam = % (tanh{\/2¥Y X + o (0)cym}
% (1+tanh[@ +1 log cosh {4/ 2¥ X + Bo(0)cam}]) g

~2B29(0) = ¥~ Bz(0) —;é (X tanh {4/2%X + B¢(0)c,m}
v

x 1+ (tanh[¢ +3 In cosh {v/2¥ X + Bo(0)c,m}]) dg-
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To find the critical temperature T, we set m = Ay = 0 in the second equation. The result

is

1

1= ﬁcv(o)w—llzde exp(— X2) + (¢gfca) cosh g, cosh(4/2% X) '

{cosh(v/2X W) +(ca[cy) cosh }?
For nearest-neighbour interactions we have ¥,2 = B.»(0)e which for the body-centred
cubic lattice gives

Y2 = 0:39328,2(0)
and, from the saddle-point equations, i, satisfies
caho tanh i, = 0-3932,

Solutions of (24) over the range of concentrations are shown 1n figure 2. Starting from
¢y = 1 where kT/v(0) = 0-709 (the Horwitz—Callen critical temperature) an approximate

(24)

0709 Ordering
temperature

for I, =0

k7 [v(0)

Curie temperature
for ¥, =0

05 I
Cu
Figure 2. Varational approximation for non-magnetic alloy and for randomly diluted
magnetic alloy (R = 1).

linear dependence of critical temperature on concentration results, representing the well-
known dilution effect. No critical concentration is predicted in this case, and it can be
shown that the equation of the curve near to ¢, = 0 1s asymptotic to

0-3932  »(0) ! {1(0)}
—— = —=In{—1.
42 kT, \RT,
Simularly we may set 7, = 0, d(k) # 0 all &, thus eliminating all magnetization effects.
In this situation an ordering transttion occurs and 1s included in figure 2.

72. Interaction of magnetization and annealing
The equations to be solved for the four types of transition are listed below, critical
values of the variables being specified by a suffix. Let

(1) T - II1: = {=2830(0)7% = {=2Bta(x)}7

dX dP V2X sinh (4/2%,X)
1= -1 ' (_ X2+P2 1 =
800 [ [ = exnl~( oo (v/ 2. X) % exp{— 2(3at v/20,))

i an dX dpP 5 o exp{2(¢ +1/2DP)} cosh(1/2¥ X) -1
7= el f f e X P D e/ 20D cosh(y/ 28 X) 4 1
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(i) T - 1II:

dX dP

1 = Bu(x) f f

: " P b v/2X sinh(1/2¥ X)
£ = vg(0) [ [ ——exp(-(X B R e 2GS IOE]
(iii) 1T - IV:

1 = ¥-1480(0) H

1 cosh(4/2¥X) —exp(—2[¢ + /20 P + {2Bv(0)R}?p, b))
{ +§ cosh(4/2¥ X) + exp( ~ 2[¢ + 4/ 2P+ {28v(0)R}?p,b])
1 cosh(4/2¥ X) - exp(—2[6 + /20 P~ {28v(0)R}*?p,b])
+2 cosh(v/2¥ X) + exp(~2[¢ +1/20P — {282(0)R}'?p, b))
77t = O Bu(k)Ky(a = 0)
26 X, —1
2B OR X,
(iv) III - IV:

1_;3@0)12”

x sech?(¢ + @4/2P +}log cosh[4/2% X + {28v(0)}*/2x,])

£°1 = W18u(0)Hyfb = 0)
2 2o

exp{ — (X2 + P?)} sech?{§ + ©4/2P +} In cosh(1/2¥ X)}

~ exp\ —(X?+ P9}4/2X tanh(1/2¥ X)

= Ky(a = 0).

L exp(- (24 o)

P Tt Hyb = 0).
Eroye a0 =Y
|
106F
0 7()()_Ordermq
3 temperoture,
<
N
<
0 345}

R=05} A=itiA=IS

E =
CA

Figure 3. Vanational approximation for magnetic alloy with equilibrium distribution.
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We have solved these equations for the case of nearest-neighbour interactions in the
body-centred cubic lattice. In this case we have from the saddle-point equations

f'(2) = Bo(0){€F (¢)~ £
8'(t) = BO(O)R(F(n) -}

) _SJ'J‘J'” du dv dw
=7
0 % —COS 1 COS U COS W

is the function appearing in the work of L.ax. Where appropriate we have used Lax’s
asymptotic expansion of F(z) in our calculations. The four systems of non-linear equations
m two and three unknowns were dealt with by the Newton-Rapheson method in con-
junction with a repeated Gauss-Hermite quadrature formula (see e.g. Kopal 1961).
Phase diagrams are presented for R = 0-5, 1 and 1-5 (figure 3).

where

8. Discussion of results and conclusions

The most striking aspect of our results is the rapid fall in Curie temperature of the
alloy in the vicinity of ¢, = $. The magnitude of the temperature change, namely

T, ~0-12(0)/k

for a change of approximately 2%, in concentration is understood in terms of the high
degree of component ordering realized at ¢, = §. For the cases R = 1, 15, this is about
999, when the magnetic transition occurs, Magnetization in B-rich alloys is possible only
for values of ¢, greater than some critical value which depends on R. No physically
meaningful solutions of the equations were found for smaller concentrations.

Long-range component ordering is enhanced when magnetization has occurred. This
effect cannot be understood on energy considerations alone and is presumably an entropy
effect

The transition curves (1) and (11) differ from the curves of the ‘decoupled’ case only
shightly (~ 1% for R = 1). However, at ¢, = } the ratio of the ordering transition
temperatures for R = 1 and 05 (exactly 2 for the ‘decoupled’ case) has the value 2-06.
Unlike the component ordering curves of the Lavis-Fairbairn method, the present approxi-
matton does not predict critical concentrations; this 1s a defect of the approximation.

A better approximation for the transition curves (i1i) and (1v) is to be expected 1f one
chooses a slightly different ‘trial function’ {2} 1n § 5. Just as parameter a explicitly takes
account of the average magnetic field, the addstion of a parameter o’ to x, imphes differing
magnetic fields on the two sublattices. Use of the form

{97} = 280(0) (o — @) + 2B0(k) (e~ ')+ 2, E(R)(:® + %% 1o+ 05" = Vid )
k#0,x
will generate an approximation which describes magnetization on the sublattices more
accurately than at present. In fact the difference of the magnetic moments of the two
sublattices should be proportional to a’. The variational calculation proceeds as before,
with necessary changes of detail, yielding an extra equation for parameter a’.

In another direction, an alternative theory may be derived from the one described
here by ‘sphericalization’, i.e. the variational calculation is performed subject to the
constraints Zu,? = N, Xt2 = N,. Mubhlschlegel and Zittartz describe a technique for
incorporating sum rules of this type.

A discussion of the experimental data for the Fe-Al alloy (see Taylor and Jones 1958)
18 given by Bell and Lavis and Lavis and Fairbairn. In writing this paper we have attempted
to provide an alternative approximation to the ones given by those authors. Inclusion of
the effects of 25 : 75 ordering 1n this scheme has not yet been tried.

Acknowledgments
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Appendix. Mean field over a sublattice
A basic result of lattice theory is

> exp(tk . 1) = ND(k) (25)

(see e.g. Peierls 1955) where D(k) = 11f k is zero or any vector of the reciprocal lattice G,
and zero otherwise. Let the vector displacement of the two sublattices be s. Then

tkl _ ks k1
z(1) € € Z‘(2)e

ND(k) = 3 e* (1 +075),
The factor Z e ! vanishes unless k = 0 (mod G) or k satisfies
exp(tk.s) = —1. (26)

Let the set of vectors satisfying (26) which lie in the first Brillouin zone be denoted by {k,}.
It follows immediately that 2k, or k,+ «, are vectors of the reciprocal lattice, 1.e.

and hence from (25)

Kk +x, =0 (modG).

The set {k,} are half reciprocal lattice vectors. For the body-centred cubic lattice the
lattice vectors are

a
l= :2’ (11, 79, 73]

where n;, 7, and 5z have the same parity. In this notation we have
a
§ = 5[1, 1, 1].

The vectors of the reciprocal lattice are

27
G= —a- [my, my, m3)

where
my +mg +mg = 0 (mod 2).

Hence with suitable restrictions on the integers m we have
w
{Kz} = ; [ml’ Mg, 77’13].

Wave vectors are deemed equivalent if they differ by any vector G. This limits us to the
choice of any one vector from the set

712,000 £101,1,0]
a

QIA QA

+210,2,00  £200,1,1]
a

™ ™
i—[0,0,ZJ i—[l:oy 1]
a a

provided it also satisfies
exp(i.s) = —1

thence
S 1y €% = IND(K) £3ND(k k)

or
2

—J_Vz a2 cos(k . 1) = D(k) + D(x —k).
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